
Dr. Manish Jivtode Page 1

PAPER – II
 UNIT – 1: ELEMENTS OF PROGRAMMING AND FUNCTIONS

 Syllabus
Introduction: Basic Elements of Programming, Console I/O
Operations,
Function: Function Prototyping, Call and Return By Reference,
Inline Function, Default and Const Arguments, Function
Overloading, Arrays, Manipulators and Enumeration.

1.1 INTRODUCTION ABOUT C++
C++ is an object oriented programming language. It was developed by
Bjarne Stroustrup in 1983 at AT & T Bell laboratories in USA. It is an
incremented version of C language. It cans also an extension of C
language and superset of C language.
The facilities are available in C++ like Classes, Function overloading,
Operator overloading, Encapsulation, Inheritance, Polymorphism,
Abstraction etc.
In this language, object oriented libraries can be in-built.

1.2 ADVANTAGES OF C++
1) C++ is a superset of C language.
2) It is an extension of C language.
3) It is an incremented version of C language.
4) It is object oriented programming language
5) All programs can run in C++ compiler.
6) It includes facilities like classes, function, overloading, operator

overloading, encapsulation, inheritance, Abstraction etc.
7) It supports polymorphism.
8) Object oriented libraries can be in-built by C++.
9) C++ program can be easily implemented, maintained and expanded.

1.3 CHARACTER SET
A character is an alphabet, digit or special symbols. It is used to
represent information. The collection of all such characters is called
character set. Every language has its own character set. C++ use valid
character set is as given
Alphabet (Upper alphabets) A, B, C,……………….,Z or

(Lower alphabets) a, b, c, ----------------------, z
Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Special symbols ~ ‘ ! @ # % ^ & * () _ -- + | \ { }] [] : ; “ < > , . ? /
Formatting characters backspace, horizontal tab, vertical tab, form feed
and carriage return

Dr. Manish Jivtode Page 2

1.4 TOKENS
Token is a collection of elements which are identified by compiler. Also
token is the smallest individual unit in a program. C++ uses following
types of tokens -
1) Keywords
2) Identifiers
3) Literals
4) Data types
5) Constants
6) Variables
7) Operators

1. Keywords
Keywords are also called reserved words. There are total 48 keywords
are available. These keywords cannot be used as variable names.
The list of C++ keywords are as –
asm double new switch
auto else operator template
break enum private this
case extern protected throw
catch float public try
char for register typedef
class friend return union
const goto short unsigned
continue if signed virtual
default inline sizeof void
delete int static volatile
do long struct while

2. Identifiers
Identifier is also known as symbolic name. It refers to the names of
variables, functions, arrays, and classes etc.
Rules for creating identifiers –
a) An identifier can consist of alphabets, digits and/or underscores.
b) It must not start with digit.
c) C++ is case sensitive that is Upper case and Lower case letter are

distinct.
d) It should not be a reserved / keyword words.

3. Literals

Dr. Manish Jivtode Page 3

Literals are also known as Constants. Literals are data items that never
change their value during the execution of the program. The types of
literals are as
a) Integer-Constants
b) Character-constants
c) Floating-constants
d) Strings-constants
a) Integer Constants
Integer constants are whole number without any fractional part.
There three types of integer constants-
1) Decimal integer constants
It consists of sequence of digits and should not begin with 0 (zero).
For example 124, - 179, +108.
2) Octal integer constants
It consists of sequence of digits starting with 0 (zero).
For example. 014, 012
3) Hexadecimal integer constant
It consists of sequence of digits preceded by ox or OX.
b. Character constants
A character constant must contain one or more characters and must be
enclosed in single quotation marks.
For example 'A', '9', etc.
An escape sequence represents a single character.
Escape sequences characters
Escape sequence is a character constant of special characters.

Escape sequences Character
\b Backspace
\f Form feed
\n Newline
\r Return
\t Horizontal tab
\v Vertical tab
\\ Backslash
\' Single quotation mark
\" Double quotation mark
\? Question mark
\0 Null character

c. Floating constants
Floating constant is also called real constants. They are numbers
having fractional parts. They may be written in fractional form or

Dr. Manish Jivtode Page 4

exponent form. A real constant in fractional form consists of signed or
unsigned digits including a decimal point between digits.
For example 3.0, -17.0, -0.627 etc.
d. String constants
A sequence of character enclosed within double quotes is called string
constants. String constant is by default (automatically) added with a
special character ‘\0' which denotes the end of the string. Therefore the
size of the string is increased by one character.
For example "COMPUTER" will re represented as "COMPUTER\0" in the
memory and its size is 9 characters.

4. Data types
A data type is a type of data to hold in variable. It is a data storage
format that can contain a specific type or range of values.
C++ support following types of data –

Data types

User defined
types

Built-in type Derived type

1. Structure
2. Union
3. Class
4. Enumeration

1. Integer
2. Char
3. Void
4. Float
5. Double

 1. Array
 2. Function
 3. Pointer

 C++ has the following basic built-in data types -
 Integer: This data type is used to define integer numbers. It is a

small integer number. The size of integer data type is 2 bytes.
For example int count;

 count=5;
 Float: This data type is used to define floating point number. It is a

small real number. The size of floating data type is 4 bytes.
For example float miles;

 Miles=5.2;
 Char: This data type is used to define characters. It is used for single

character. The size of char data type is 1 bytes.
For example char letters;

letters=’m’;
 Double: This data type is used big floating point numbers. It reserves

twice the storage for the number. The size of double data type is 8
bytes.

Dr. Manish Jivtode Page 5

For example double atoms;
atoms=2500000;

 long double: This data type is used for long floating point numbers.
The size of long data type is 10 bytes.
For example long double population;

 Population=10000000;
 void: The type void is used for a function, when function does not

return any value.

5. Constants
A variable which does not change its value during execution of a
program is known as a constant variable.
For example const float PI = 3.1415;

 const int RATE = 50;
 const float PI = 3.1415;
 const char CH = 'A';

6. Variables
A variable is a named area of storage that can hold a single value
(numeric or character). Variable names are the symbolic
representation of a memory location. The variables can be used to
hold different values at different times during the execution of a
program.
For example int a,b,c;

int sum=0,f=1;
Rules for writing variable name
Variable name can be composed of letters (both uppercase and
lowercase letters), digits and underscore '_' only.
 The first letter of a variable should be either a letter or an

underscore.
 Spaces are not allowed.
 Keywords are not allowed as a variable name.

6. Operators
Operators are special symbols that used in C++ program to form an
expression. Operator is used to transform one or more values into a
single resultant value.
Operators are basically classified into three categories. These are -
 Unary operator
The operators that operate a single operand to form an expression
are known as Unary operators. The operators like + (increment)
operator, - (decrement) operator.

Dr. Manish Jivtode Page 6

 Binary operator
The operators that operate two or more operands are known as
Binary operators. The operators like +, -, *, /, % etc.
For example – a+b, a-b, a*b, a/b, a%b
 Ternary operator
The operator that operates minimum or maximum three operands
is known as Ternary operator. There is only one ternary operator
available in C++. The operator is ?: that is used as a substitute of
if—else statement.
For example a>b ? a : b
Types of Binary operators
C++ language support following types of operators –
 Arithmetic operators
 Relational operators
 Logical operators
 Unary operators
 Assignment operators
 Increment and decrement operators
 Conditional operators
 The comma operator
 The size of operator
 The order of precedence
 Bitwise operator
 Scope resolution operator

 Arithmetic operators
Arithmetic operators are used to perform an arithmetic
operation/expression. These operators are
+ (Addition), -(Subtraction), *(Multiplication), /(Division), %(Modulus)
 Relational operators
Relational operator also called Comparison operator. These operators
are used to test the relation between two values. It requires two
operands. A relational expression returns zero when the relation is false
and a non-zero when it is true.
These operators are

Relational operators Purpose
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to (equality)
!= Not equal to

Dr. Manish Jivtode Page 7

 Logical operators
The logical operators are used to combine one or more relational
expression. The logical operators are

Logical operators Purpose
&& AND if both the condition are

true then the result is true
|| OR if one of the condition is

true then the result is true
! If both the condition are true

then the result is false
 Unary operators
This provides two unary operators for which only one variable is
required.
For Example
a = - 50;
a = + 50;
Here plus sign (+) and minus sign (-) are unary because they are not
used between two variables.
 Assignment operators
The assignment operator '=' is used for assigning a variable to a value.
This operator takes the expression on its right-hand-side and places it
into the variable on its left-hand-side.
For example
m = 5;
It also support compound assignment operators.
Compound Assignment Operators

Operator Example Equivalent
to

+= A+=2 A=A+2
-= A-=2 A=A-2
%= A%=2 A=A%2
/= A/=2 A=A/2
= A=2 A=A*2

 Increment and decrement operators
C++ provides two special operators. These are '++' and '--' for
incrementing and decrementing the value of a variable by 1. They can
be used with any type of variable but it cannot be used with any
constant. It has two forms, pre and post.
The syntax of the increment operator is:
Pre-increment: ++variable
Post-increment: variable++

Dr. Manish Jivtode Page 8

The syntax of the decrement operator is:
Pre-decrement: ––variable
Post-decrement: variable––
In Prefix form first variable is first incremented/decremented, then
evaluated
In Postfix form first variable is first evaluated, then
incremented/decremented
int x, y;
int i = 10, j = 10;
x = ++i; //add one to i, store the result back in x
y = j++; //store the value of j to y then add one to j
cout << x; //11
cout << y; //10
 Conditional operators
The conditional operator?: is called ternary operator. This requires
three operands.
The general format of the conditional operator is
Conditional expression? expression1: expression2;
If the value of conditional expression is true then the expression1 is
evaluated, otherwise expression2 is evaluated.
int a = 5, b = 6;
big = (a > b) ? a : b;
In the above statement, the condition evaluates to false, therefore
biggest the value from b and it becomes 6.
 The comma operator
The comma operator gives left to right evaluation of expressions. The
set of expressions has to be evaluated for a value, only the rightmost
expression is considered.
For example int a = 1, b = 2, c = 3, i; // comma acts as separator, not
as an operator
i = (a, b); // stores b into i
In the above statement first assign the value of a to i, and then
assign value of b to variable i. So, at the end, variable i would contain
the value 2.
 The size of operator
The sizeof operator can be used to find how many bytes are required for
an object to store in memory.
For example sizeof (char) returns 1

 sizeof (float) returns 4
The sizeof operator determines the amount of memory required for an
object at compile time rather than at run time.

Dr. Manish Jivtode Page 9

 The order of precedence
The order in which the Arithmetic operators (+,-,*,/,%) are used in a
given expression is called the order of precedence.
The following table shows the order of precedence.
Order Operators

 First ()
Second * / %
 Third + -
 Bitwise operator
The operator which operate a bit level and allows manipulating
individual bits. These are basically used for testing or shifting bits.
For example x<<3
Shift three bit position to left.
 Scope resolution operator
C++ is also a block-structured language. It may contain block
within block.

Declaration of variable in an inner block hides a declaration of
same variable in an outer block. Therefore each declaration will
cause refer to a different data object. :: Scope resolution operator
can be used to uncover a hidden variable. It has the form ::
variable_name. This operator allows access to a global version of
variable.
For example
:: count means global version of count and not the local variable
count.

1.5 TYPE CONVERSION
The process in which one pre-defined type of expression is converted
into another type is called conversion.
There are two types of conversion in C++
1) Implicit conversion
2) Explicit conversion
1) Implicit conversion
Data type can be mixed in the expression.
For example
double a;
int b = 5;
float c = 8.5;
a = b * c;

Dr. Manish Jivtode Page 10

When two operands of different type are encountered in the same
expression, the lower type variable is converted to the higher type
variable.
The following table shows the order of data types.

Order of data types
Data type Order
Long double
Double Highest
Float To
Int lowest
Char
In the above example, int value of b is converted to type float and stored
in a temporary variable before being multiplied by the float variable c.
The result is then converted to double so that it can be assigned to the
double variable a.
2) Explicit conversion
It is also called type casting. It temporarily changes a variable data type
from its declared data type to a new one. Here type casting can only be
done on the right hand side the assignment statement.
totalPay = static_cast<double>(salary) + bonus;
in this example, initially variable salary is defined as float but for the
above calculation it is first converted to double data type and then
added to the variable bonus.

1.6 CONSOL INPUT / OUTPUT STATEMENT (I/O)
The following C++ stream objects can be used for the input/output
purpose -
1) cout console
2) cin console
cout is output consol used to display message on screen with insertion
(<<) operator. It inserts (or sends) the contents of the variable on its
right to the object on its left.
For example
cout<< “Enter the value of num1”;
cout<<250;
cout<<sum;
cout<<”Area of Rectangle=”<<area;
cin is input consol used to input a value entered by the user from the
keyboard with extraction (>>) operator.
For example
int marks;
cin >> marks;

Dr. Manish Jivtode Page 11

1.7 STRUCTURE OF C++ PROGRAM
C++ program contains four sections. This is shown in figure –

 Comment section / Documentations

Preprocessor directories / statements
Global declarations

Main() function
{

 * Local declaration
* Program statements and expression
}

Here,
Comment section / Documentations
This is optional section. Comments are a way of explaining what
makes a program. Comments are ignored by the compiler. There
are two types of comments –
a. Single line comments
b. Multiline comments
Single line comments represents //.
For example // To print area of circle
Multiline comments represents /* */.
For example /* This program written by M. Kumar
 To print factorial of any given number */
Processor directories/ Statements
C++ provides two preprocessor directives -
1) #include
2) #define
The #include is a preprocessor directive and to define header files
such as iostream.h, conio.h, math.h, string.h, graphics.h etc.
For example,
#include<iostream.h>
#include<conio.h>
The #define is a preprocessor directive and to define symbolic
name. Symbolic name is any valid variable names are written in
upper case letters only.
For example,
#define PI 3.14 Here #define is the symbolic name
Main() function represents int main() / void main(). The main() is
the main function where program execution begins. Every C++
program should contain only one main function.

Dr. Manish Jivtode Page 12

Opening and closing Braces represents { and }. Two curly brackets
are used to group all statements together.
For example,
/* This is C++ program*/ - Comment line
#include<iostream.h> - Preprocessor directive
void main() - main function
{
Cout<<” C++ is a object oriented programming language”;
}
Output
C++ is a object oriented programming language.

Example Write C++ program to calculate the area of rectangle
#include <iostream>
#include<conio.h>
void main ()
{

int length , breadth , area;
clrscr();
cout << "Enter length of rectangle: ";
cin >> length;
cout << "Enter breadth of rectangle: ";
cin >> breadth;

 area = length * breadth;
 cout << "Area of rectangle = " << area;

getch();
}
Output
Please enter length of rectangle: 6
Please enter breadth of rectangle: 4
Area of rectangle is 24

Dr. Manish Jivtode Page 13

1.8 CONTROL STRUCTURES
There are three types of control structures used in C++:
1. Sequence structure i.e. straight line structure
2. Selection structure i.e. branching/ Decision making /

Conditional structure
3. Loop structure i.e. Iteration or repetition structure

1. Sequence structure
In this structure, statements are executed one after another i.e
sequentially.
For example
#include<iostream.h>
void main()
{
float area,pi=3.14,r;
cout<<” Enter the value of radius :”;
cin>>r;
area= pi * r * r;
cout<<”Area of circle =“<< area;
}

2. Selection structure
In this structure, one or more conditions to be evaluated along with
statement or statements.
Types of Selection or Branching statements are as
 If statement
 If --- else statement
 If ---- else if ----- else statement
 Switch statement
 If ---- statement
The general format is
If (condition)
{
Statement/statements;
…
}
Here, if statement check the condition. If the condition is true then
the result will display otherwise it does not display result.

Dr. Manish Jivtode Page 14

For example
Write program in C++ to inputted any two given number and
check it which is largest.
#include<iostream.h>
void main()
{
int num1,num2;
cout<<”Enter the num1”;
cin>>num1;
cout<<”Enter the num2”;
cin>>num2;
if(num1>num2)
{
Cout<<num1<<”is largest number”;
}
Output
Enter the num1 34
Enter the num2 24
34 is largest number
 If ---- else statement
The general format is
If (condition)
{
Statement1;
}
else
{
Statement2;
}
Here, if statement checked the condition. If the condition is true
then statement1 will be executed otherwise statement2 will be
executed.
For example
Write program in C++ to inputted any two given number and
check it which is largest.
#include<iostream.h>
void main()
{
int num1,num2;
cout<<”Enter the num1”;
cin>>num1;
cout<<”Enter the num2”;

Dr. Manish Jivtode Page 15

cin>>num2;
if(num1>num2)
{
cout<<num1<<”is largest number”;
}
else
{
cout<<num2<<”is largest number”;
}

Output
Enter the num1 21
Enter the num2 24
24 is largest number
 If ---- elseif--- else statement
The general format is
If (condition1)
{
Statement1;
}
Else if(condition2)
{
Statement2;
}
..
..
else
{
Statement n;
}
Here, this is also called nested statement. If statement check the
condition1. If the condition1 is true then statement1 will be
executed otherwise if the condition is false then the conditio2 will
be checked if it is false then condition is checked. If all the
conditions are false then else part will be executed.

Dr. Manish Jivtode Page 16

For example
Write program in C++ to inputted any three given number and
check it which is largest.
#include<iostream.h>
 Void main()
{
int num1,num2,num3;
cout<<”Enter the num1”;
cin>>num1;
cout<<”Enter the num2”;
cin>>num2;
cout<<”Enter the num3”;
cin>>num3;
if(num1>num2 && num1>num3)
{
cout<<num1<<”is largest number”;
}
elseif(num2>num1 && num2>num3)
{
cout<<num2<<”is largest number”;
}
else
{
cout<<num3<<”is largest”;
}
Output
Enter the num1 34
Enter the num2 24
Enter the num3 45
45 is largest number

 Switch statement
This is a multiple branching statement, where based on a
condition, the control is transfer to one of the many possible
points.

Dr. Manish Jivtode Page 17

The general format is

The execution of switch statement begins with the evaluation of
expression. If the value of expression matches with the constant then
the statements following this statement execute sequentially till it
executes break. The break statement transfers control to the end of the
switch statement. If the value of expression does not match with any
constant, the statement with default is executed.
For example
Write program in C++ to display the name of the day in a week,
depending upon the number entered through the keyboard.
#include<iostream.h>
#include<conio.h>
void main()
{
int day;
clrscr();
cout<<”Enter a number between 1 and 7\n”;
cin>>day;
switch(day)
{
Case 1:

Cout<<”Monday\n”;
Break;

Case 2:
Cout<<”Tuesday\n”;
Break;

Dr. Manish Jivtode Page 18

Case 3:
Cout<<”Wednesday\n”;
Break;

Case 4:
Cout<<”Thursday\n”;
Break;

Case 5:
Cout<<”Friday\n”;
Break;

Case 6:
Cout<<”Saturday\n”;
Break;

Case 7:
Cout<<”Sunday\n”;

Default:
Cout<<”Invalid entry”;
Break;

}
getch();
}
Output
Enter a number between 1 to 7
2
Tuesday
2. Loop structure
In this structure, Loop is repeatedly executed statement or group of
statements multiple times if the condition is true. If the condition
is false then loop is terminated.
Types of looping statements are as
 While statement
 Do – while statement
 For statement

 While statement
The general format is
While(condition)
{
Statement/statements
}
Here, while checked the condition if statement or group of
statements executed while given condition is true. If the condition
is false then loop is automatically terminated.

Dr. Manish Jivtode Page 19

For example -
Write program in C++ to print 1 to 10 numbers.
#include<iostrem.h>
void main()
{
int i=1;
while(i<=10)
{
cout<<i<<”\n”;
n=n+1;
}

 do ---- while statement
The general format is
do
{
Statement
}
While(condition);
Here the conditional expression appears at the end of the loop, so the
statement(s) in the loop execute once before the condition is tested.
If the condition is true, the flow of control jumps back up to do, and
the statement(s) in the loop execute again. This process repeats until
the given condition becomes false.
For example
Write program in C++ to print 1 to 10 numbers.
#include<iostream.h>
Void main()
{
int i=1;
do
{
Cout<<i<<”\n”;
i=i+1;
}
While(i<=10);
}

Dr. Manish Jivtode Page 20

 For statement
The general format is
for(initial value; test condition; increment)
{
Statement;
}
For loop has perform three operations -
1. Initialization of loop control variable
2. Testing of loop control variable
3. Update the loop control variable either by incrementing or

decrementing.
Operation (1) is used to initialize the value. On the other hand,
operation (2) is used to test whether the condition is true or false. If the
condition is true, the program executes the body of the loop and then
the value of loop control variable is updated. Again it checks the
condition and so on. If the condition is false, it gets out of the loop.
For example –
Write program in C++ to print 1 to 10 numbers
#include<iostrem.h>
Void main()
{
int i;
for(i=1;i<=10;i++)
{
Cout<<i<<”\n”;
}

 Nested for loop
The general format is
for (initialization ; condition ; exp)
{
for(initialization ; condition ; exp)
{
Statements
}
}
When on one for statement is used within another for statement,
then it is called nesting of for loops.
The first for loop is the outer loop. it is used for row and second for
loop is inner loop. It is used for columns.

Dr. Manish Jivtode Page 21

For example
#include<iostream.h>
#include<conio.h>
void main()
{
int i,j;
for(i=0;i<=5;i++)
{
for(j=1;j<=I;j++)
{
cout<<j;
}
cout<<”\n”;
}
getch();
}

1.9 JUMP STATEMENT
The jump statements unconditionally transfer program control within a
function
1. Labels and goto statement
2. break statement
3. continue statement
 Labels and goto statement
The general format of goto and label statement are
goto label;

Label: statement
A goto statement is unconditional branching statement. A goto
statement can cause program control to end up anywhere in the
program checking for any condition.
A goto requires a label in order to identify the place where the branch is
to be made. A label is any valid variable name and must be followed by
colon. A label is placed immediately before the statement where the
control is to be transferred.

Dr. Manish Jivtode Page 22

For example
#include<iostream.h>
#include<conio.h>
void main()
{
int a,b;
cout<<”Enter the value of a and b=”;
cin>>a>b;
if(a>b)
{
goto label1-para;
}
else
{
goto label2-para;
}
label1-para:
cout<<”a is largest number”;
label2-para:
cout<<”b is largest number”;
getch();
}
 The break statement
The general format is
break;
Here, break statement exit from loop. When break statement is
encountered inside a loop, the loop is immediately existed and entire
program continues with the statement immediately following the loop.
When the loops are nested, the break would only exit from the loop
containing it. That is, break will exit only a single loop.
The break statement can be used while loop, do—while loop and for
loop.
For example
for(t=0 ; t<100 ; ++t)
{
count = 1;
for(; ;)
{
cout<<count;
count++;
If(count==10)

Dr. Manish Jivtode Page 23

Break;
}
}

 The continue statement
The general format is
continue;
Here, when continue is used inside any loop, control automatically
passes to the beginning of the loop. when use continue within loop,
continue causes the conditional test and increment portions of the loop
to execute.
The continue statement skips rest of the loop body and starts a new
iteration.
For example
for(i=0 ; i<4 ; i++)
{
cin>>number;
if(number ==0)
continue;
k=1.0 / number;
cout<<k;
}
 The exit statement;
The general format is
exit (code) ;
Here, the execution of a program can be stopped at any point with exit
and a status code can be informed to the calling program.
Where, code is an integer value. The code has a value 0 for correct
execution. The value of the code varies depending upon the operating
system.

For example
for(i=0;i<5;i++)
{
cout<<I;
exit;
}

Dr. Manish Jivtode Page 24

1) Write program in C++ to check given number is Negative or
Positive.

#include<iostream.h>
void main()
{
int num;
clrscr();
cout<<”Enter the number=”;
cin>>num;
if(num>0)
{
Cout<<num<<”is Positive number”;
}
Else
{
Cout<<num<”is Negative number”;
}
getch();
}
Output
Enter the number = 4
4 is positive number

2) Write program in C++ to check given number is Odd or Even
#include<iostream.h>
void main()
{
int num;
clrscr();
cout<<”Enter the number=”;
cin>>num;
if(num%2==0)
{
Cout<<num<<”is Even number”;
}
Else
{
Cout<<num<”is Odd number”;
}
getch();
}
Output

Dr. Manish Jivtode Page 25

Enter the number = 4
4 is Even number

1.10 FUNCTIONS
A function is self contained block of statements that perform a
specific task.
Use of Function
Functions are used to manipulate data item values and return a
result.
Advantages of Functions
1) To reduce the length of program
2) To save memory space
3) Read, Write and debug program is easier
4) Modification and maintenance of program is easy
Types of Function
Functions are two types –
1) Library function
2) User defined function
Library function is also called pre-defined functions. These
functions are in-built in Lib directory.
For example,
Max(), Min(), length(), abs(), sum(), sqrt(), pow() etc.
User defined function means user can defined own function.
The general format is
Return-type function-name(arg1,arg2,….)
{
Function body
}
Here, function name is valid name of identifier. Argument is user
supplied values or variables.
For example,
#include<iostream.h>
#include<conio.h>
int add(int x, int y)
{
return(x+y);
}
void main()
{
int a,b;
clrscr();

Dr. Manish Jivtode Page 26

cout<<”Enter the value of A and B =”;
cin>>a>>b;
add(a,b);
cout<<”Addition of A and B=”<<(a*b);
getch();
}

1.11 FUNCTION PROTOTYPE
The prototype is a declaration that defines the arguments passed to
the function and type of value returned by the function.
The general form is
Type function–name (argument list);
Here, the argument list contains the types and names of arguments
that must be passed to the function.
For example – float volume (int x, float y, float z);

1.12 ARGUMENTS TO A FUNCTION
The calling function supplies some values to the called function. These
are known as parameters. The variables which supply the values to a
calling function called actual parameters. The variable which receive
the value from called statement are termed formal parameters.
Consider an example of actual and formal parameters
#include<iostream.h>
void area(float)
void main()
{

float radius;
cin>>radius;
area(radius);
return 0;

}
void area(float r)
{

Cout<<”The area of the circle is “<<3.14*r*r<<”\n”
}
getch();
}
Here radius is called actual parameter and r is called formal
parameter.

Dr. Manish Jivtode Page 27

1.13 CALL BY VALUE AND CALL BY REFERENCE
There are two way to pass data or argument to function
1) Call by value
2) Call by reference
Figure shows operation of call by value and call by reference

In call by value, original value cannot be changed.
In call by value, when a portion of the program invokes a function,
control will be transferred from the main function to the calling
function and the value of actual arguments is copied to the
function. Within function the actual value may be altered or
changed. When the control is transferred back from function to the
program, altered values are not transferred back.
Consider an example of Call by value
#include<iostream.h>
#include<conio.h>
Void swap(int a, int b)
{
Int temp=a;
a=b;
b=temp;
}
void main()
{
Int a=100, b=200;
Swap(a,b);
Cout<<”Value of a=”<<a;
Cout<<”Value of b=”<<b;
Getch();
}
Output
Value of a=100
Value of b=200
In call by reference, original values can be changed.
In call by reference, when a function is called by a program the
address of the actual arguments are copied onto the formal

Dr. Manish Jivtode Page 28

arguments i.e. the formal and actual arguments are referencing to
same memory location. Therefore change in value of formal
argument affects the value of actual arguments. The call by
reference is used when function produces more than one value and
provides these values to the caller.
Consider an example of Call by reference
#include<iostream.h>
#include<conio.h>
Void swap(int *a, int *b)
{
Int temp=*a;
*a=*b;
*b=temp;
}
void main()
{
Int *a=100, *b=200;
Swap(&a,&b);
Cout<<”Value of a=”<<a;
Cout<<”Value of b=”<<b;
getch();
}
Output
Value of a=200
Value of b=100

1.14 RETURN STATEMENT
A return statement may send value to the calling function. A return
statement can return only one value per call.
It can have several forms –
1) return;
2) return(expression);
In the first form of return, return does not return any value but it
only returns the control of execution to the calling function.
In the second form of return, returns values of expression.
For example,
#include<iostream.h>
#include<conio.h>
Int add(int x, int y)
{
return(x+y);
}

Dr. Manish Jivtode Page 29

Void main()
{
Int a,b;
Cout<<”Enter two number=”;
Cin>>a>>b;
Add(a,b);
Cout<<”Addition =”>>(a+b);
}

1.15 INLINE FUNCTION
An inline function to put code in function body directly inside the
program. So function is called. Such function is called inline
function.
Inline function is a function that is expanded in line when it is
invoked i.e. compiler replaces the function call with corresponding
function code. It is useful for small size functions. Inline function
defined with inline keyword.
To save execution time in short functions, inline function is used.
The general form of inline function is
inline function-header
{

Function body
}
Rules for use of inline function
 Function is made inline by putting a word inline in the beginning.
 Inline function should be declared before main() function.
 It does not have function prototype.
 Only shorter code is used in inline function.
Consider an example of inline function
#include<iostream.h>
#include<conio.h>
inline int multi(int x, int y)
{
return(x*y);
}
inline int add(int x,int y)
{
return(x+y);
}
void main()
{
int i,j;

Dr. Manish Jivtode Page 30

clrscr();
cout<<"Enter i and j";
cin>>i>>j;
cout<<"Add"<<add(i,j)<<"\n";
cout<<"multi"<<multi(i,j);
getch();
}
Output
Enter I and j 3 4
Add 7
Multi 12

1.16DEFAULT AND CONST ARGUMENTS
A default argument is a value provided in function declaration that is
automatically assigned by the compiler if caller of the function doesn’t
provide a value for the argument with default value.
Consider an example of default arguments
/* function with default arguments, it can be called with
2 arguments or 3 arguments or 4 arguments.*/
#include<iostream.h>
int sum(int x, int y, int z=0, int w=0)
{
 return (x + y + z + w);
}
/* program to test above function*/
int main()
{
 cout << sum(10, 15) << endl;
 cout << sum(10, 15, 25) << endl;
 cout << sum(10, 15, 25, 30) << endl;
 return 0;
}
Output
25
50
80

1.17FUNCTION OVERLOADING
Overloading means the use of same thing for different purposes.
Function overloading means the use of same function name to
create functions that perform a variety of different tasks. This is
known as function polymorphism.

Dr. Manish Jivtode Page 31

Consider an example of function overloading,
#include<iostream.h>
#include<conio.h>
void test(int);
void test(float);
void test(int, float);
void main()
{
int a=5;
float b=5.5;
clrscr();
test(a);
test(b);
test(a,b);
getch();
}
void test(int n)
{
cout<<"Integer number:"<<n<<"\n";
}
void test(float n)
{
cout<<"Float number:"<<n<<"\n";
}
void test(int n1, float n2)
{
cout<<"Integer :"<<n1<<"\n";
cout<<"Float :"<<n2;
}
Output
Printing Addition: 12
Printing Subtraction: 283.56

1.18 ARRAY
An array is a collection of homogenous data elements of same data
type. It is described by a single name and each element of an array is
referenced by using array name and its subscript no.
There are two types of array –
1. One dimensional array
2. Two dimensional array

Dr. Manish Jivtode Page 32

1. One dimensional array
Declaration of 1D Array
The general format is
DataType arrayName[size of array];
For example,
int age[5];
float cost[30];

Initialization of One Dimensional Array
An array can be initialized along with declaration. For array
initialization it is required to place the elements separated by commas
enclosed within braces.
int a[5]={11,22,23,4,15];
It is possible to leave the array size open. The compiler will count the
array size.
int b[]={6,7,8,9,15,12};
Referring to Array Elements
In any point of a program in which an array is visible, it can access the
value of any of its elements individually as if it was a normal variable,
thus being able to both read and modify its value.
The format is as simple as:
name[index]
For example
cout<<age[4]; // print an array element
age[4]=55; // assign an array element
cin>>age[4]; // input element 4
Example
#include<iostream.h>
#include<conio.h>
Void main()
{
Int a[n];
Cout<<”Enter the length of array”;
Cin>>n;
For(int i=0;i<n;i++)
{
Cin>>a[i];

Dr. Manish Jivtode Page 33

}
Cout<<”To print array elements”;
For(i=0;i<n;i++)
{
Cout<<a[i]<<”\n”;
}
}

2. Two Dimensional Array
It is a collection of data elements of same data type arranged in rows
and columns (that is, in two dimensions).
Declaration of Two-Dimensional Array
The genral format is
DataType arrayName[number Of Rows] [number Of Columns];
For example
int sales[3][5];
Initialization of Two-Dimensional Array
An two-dimensional array can be initialized along with declaration. For
two-dimensional array initialization, elements of each row are enclosed
within curly braces and separated by commas. All rows are enclosed
within curly braces.
For example
int a[4][3]={{22,23,10},{15,25,13},{20,74,67},{11,18,14}};
Referring to Array Elements
To access the elements of a two-dimensional array, need a pair of
indices: one for the row position and one for the column position.
The format is as
name [row_Index] [column_Index]
for examples:
cout<<a[1][2]; // print an array element
a[1][2]=13; // assign value to an element
cin>>a[1][2]; // input element
Example
#include<iostream.h>
#include<conio.h>
Void main()
{
Int a[r][c];
Cout<<”Enter the number of rows and columns of matrix”;
Cin>>r>>c;
For(int i=0;i<r;i++)
{

Dr. Manish Jivtode Page 34

For(int j=0;j<c;j++)
{
Cin>>a[r][c];
}
}
Cout<<”To print array elements”;
For(i=0;i<r;i++)
{
For(j=0;j<c;j++)
{
Cout<<a[r][c]<<”\n”;
}
}
1.19 MANIPULATORS
Manipulators are operators that are used to format the data
display. The most commonly used manipulators are endl and setw.
The endl operator is similar to that of ‘\n’. It causes a line feed to
be inserted.
For example
cout<< “m=” <<m << endl;
cout<< “n=” <<n << endl;
This would cause two lines of output.
m = 1 2 3 4
n = 12
The manipulator setw specifies fieldwidth.
For example
cout<< setw (5)<< sum << endl;
Here the field width is 5 for printing the value of variable sum.

1.20ENUMERATION
Enumeration is a user defined data type that consists of integer
constants. To define an enumeration, keyword enum is used.
The general format is
enum enum_name{arg1, arg2, ……….}
For example: enum color{yellow, green, black, white}
Here,
the name of the enumeration is color and yellow, green, black and
white are values of type color. By default yellow is 0, green is 1,
black is 2 and white is 3. Also it can change the default value of an
enum element during declaration.
Example
#include<iostream.h>

Dr. Manish Jivtode Page 35

#include<conio.h>
Enum color{red,green,blue};
Void main()
{
Color code1,code2,cod3;
Code1=red;
Code2=green;
Code3=blue;
Cout<<”Color code=”<<code1;
Cout<<”Color code=”<<code2;
Cout<<”Color code=”<<code3;
}
Output
Color code1=0
Color code2=1
Color code3=2
Note: To change the default value of enum elements - code=green+1

-----*-----*-----*-----*-----*-----

Dr. Manish Jivtode Page 36

Assignment Unit – 1

1. Explain data types in C++

2. Explain if--- else if statement with suitable example.

3. Define inline function with example.

4. What is meant by default and constant arguments.

5. Write note on manipulators.

Dr. Manish Jivtode Page 37

Assignment Web site :

1) http://www.sanfoundry.com/c-plus-plus-

interview-questions-and-answers-arrays/

2) www.cppforschool.com/assignm (More examples

in C++)

http://www.cppforschool.com/assignm

Dr. Manish Jivtode Page 38

Assignment Questions
Unit – I

Q. 1 Select the correct answer
1) The value 132.54 can represented using which data type?
a) double
b) void
c) int
d) bool
Ans :-
2) What is the size of long data type?
a) 2 byte
b) 10 byte
c) 8 byte
d) 4 byte
Ans :-
3) Which of the following correctly declares an array?
a) int array[10];
b) int array;
c) array{10};
d) array array[10];
Ans:-
4) Which of the following gives the memory address of the first element in array?
a) array[0];
b) array[1];
c) array(2);
d) array;
Ans:-

Q.2 What will be the output of the this program?
#include <iostream.h>
#include<conio.h>
void main ()
{

int array[] = {0, 2, 4, 6, 7, 5, 3};
int n, result = 0;
for (n = 0; n < 8; n++) {
{

result += array[n];
 }
 cout << result;

}

Dr. Manish Jivtode Page 39

Q.3 What is the output of this program?
 #include<iostream.h>
 void main()
 {
 int a = 5, b = 10, c = 15;
 int arr[3] = {&a, &b, &c};
 cout << *arr[*arr[1] - 8];
 }

Q.4 What is the output of this program?
 #include <conio.h>
 #include<iostream.h>
 void main()
 {
 char str[5] = "ABC";
 cout << str[3];
 cout << str;
 }

Q.5 Re-arrange the code
1. void main()
2. {
3. add.get();
4. add.show();
5.add.cal();
6. op add;
7. }
8. void get()
9.{
10. cout<<”Enter n1 and n2 value=”;
11. cin>>n1>>n2;
12.}
13. class op
14. {
15. private:
16. int n1,n2,n3;
17. public:
18. void cal()
19. {
20. n3=n1+n2;
21.}
22. void show()
23.{

Dr. Manish Jivtode Page 40

24. cout<<”Addition=”<<n3;
25.}
26.};

